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Abstract1

Recent work has argued that large-scale neural recordings are often well described by low-dimensional2

‘latent’ dynamics identified using dimensionality reduction. However, the view that task-relevant vari-3

ability is shared across neurons misses other types of structure underlying behavior, including stereotyped4

neural sequences or slowly evolving latent spaces. To address this, we introduce a new framework that5

simultaneously accounts for variability that is shared across neurons, trials, or time. To identify and6

demix these covariability classes, we develop a new unsupervised dimensionality reduction method for7

neural data tensors called sliceTCA. In three example datasets, including motor cortical dynamics during8

a classic reaching task and recent multi-region recordings from the International Brain Laboratory, we9

show that sliceTCA can capture more task-relevant structure in neural data using fewer components10

than traditional methods. Overall, our theoretical framework extends the classic view of low-dimensional11

population activity by incorporating additional classes of latent variables capturing higher-dimensional12

structure.13

1 Introduction14

Neural activity varies in relation to fluctuations in the environment, slow changes in circuitry, and heteroge-15

neous cell properties, creating variability across neurons, time, and trials. Recent work has emphasized that16

trial-to-trial variability is often correlated across large populations of neurons [Cunningham and Yu, 2014],17

generating low-dimensional representations of sensory or behavioral variables. Indeed, analyzing shared vari-18

ability across neurons has led to key insights into the information encoded and computations performed by19

neural circuits [Panzeri et al., 2022, Jazayeri and Ostojic, 2021]. Such findings have driven an increase in the20

popularity of dimensionality reduction methods, such as principal component analysis (PCA), which seek21

to capture structure in neural data by identifying covarying population-wide patterns. More recent work22

has advocated instead for applying tensor-based methods, such as tensor component analysis (TCA), that23

distinguish between changes in neural dynamics that occur over fast (within-trial) and slow (between-trial)24

timescales [Williams et al., 2018, Harshman et al., 1970, Carroll and Chang, 1970]. In both of these ap-25

proaches, neural activity is assumed to be constrained to a low-dimensional neural subspace (defined by a26

set of latent variables) that is fixed over the course of an experiment.27

However, this picture of latent variables fails to account for some forms of shared variability in neural28

circuits. First, not all population dynamics are described by a fixed covariance structure. For example, many29

brain areas produce temporal sequences in which the latency of activation varies from neuron to neuron,30

but which are highly stereotyped across conditions [Seely et al., 2016, Pastalkova et al., 2008, Peters et al.,31

2014, Okubo et al., 2015, Harvey et al., 2012]. Second, the neural encoding weights for a given sensory32

stimulus may change over trials due to adaptation, learning, [Hennig et al., 2021], or representational drift33

[Rule et al., 2019, Driscoll et al., 2017, Schoonover et al., 2021]. Because methods such as PCA or TCA look34

for covariability across neurons, they may miss additional forms of variability that are instead shared across35

time or across trials.36

To address this, we introduce slice tensor component analysis (sliceTCA), an unsupervised dimensionality37

reduction method that is able to identify and disentangle latent variables belonging to three different classes38
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of covariability (defined as variability shared across neurons, time, or trials) that are mixed within the39

same dataset. This property contrasts sliceTCA from matrix factorizations like PCA which capture a40

single covariability class at a time, and from TCA which identifies components constrained to all of them41

simultaneously. As a result, we show that sliceTCA can capture more structure in fewer components than42

either of these methods. Based on theoretical and practical considerations of the sliceTCA decomposition,43

we develop an analysis pipeline for model selection, optimization, and visualization that is implemented in44

a readily applicable Python library.45

After validating our method on simulated data, we illustrate the utility of sliceTCA in three large-scale46

neural datasets. First, we demonstrate that different covariability classes encode distinct behaviorally rele-47

vant neural dynamics in motor cortical recordings in non-human primates [Churchland et al., 2012]. Next,48

in simultaneous imaging data from cortical and cerebellar populations during a cued motor task [Wagner49

et al., 2019], we show that sliceTCA untangles task-relevant manifolds by taking into account covariability50

across trials. Finally, we analyze a recent dataset from the International Brain Laboratory [IBL et al., 2022]51

and show that sliceTCA disentangles region-specific covariability classes across visual cortex, hippocampus,52

thalamus, and the midbrain. We then provide a geometric intuition for how neural population activity53

is shaped by latent variables belonging to the three different covariability classes. Together, these results54

demonstrate the necessity of extending the traditional view of latent variables and neural covariability to un-55

cover higher-dimensional latent structure. With sliceTCA, we propose a novel, unsupervised dimensionality56

reduction method that uncovers co-existing classes of behaviorally relevant covariability in neural datasets.57

2 Results58

2.1 Overview of sliceTCA59

SliceTCA is an unsupervised dimensionality reduction method that generalizes matrix factorizations, a60

class of methods which includes PCA and non-negative matrix factorization (NMF). Matrix factorizations61

approximate a data matrix X as a sum of R components:62

X ≈ X̂ =

R∑
r=1

X(r). (1)63

In neuroscience, X is generally a matrix of size N ×KT containing the activity of N neurons recorded over64

K trials, each containing T timepoints. Each component X(r) is a rank-1 matrix defined by a set of R neural65

factors describing different activation patterns across the population, and a set of R corresponding temporal66

factors describing how the strength of these patterns evolves over the course of experiment (Figure 1a). By67

constraining each component to a rank-1 matrix, these methods capture shared variability across neurons.68

However, this approach to neural dimensionality reduction has two limitations. First, by concatenating69

trials together to structure the data into a matrix, they do not distinguish between rapid dynamics within70

a trial and slower changes across trials [Williams et al., 2018]. Second, not all population activity is well71

described by shared variability across neurons. For example, motor cortical dynamics may be better described72

by stereotyped sequences of neural activation which are shared across trials of the same condition [Seely et al.,73

2016]. These limitations can be addressed by structuring the data into an N × T × K tensor which can74

be similarly decomposed following equation 1 into a low-rank tensor approximation. For this, we must75

generalize the concept of a rank-1 matrix to tensors. Different definitions of the tensor rank will capture76

different forms of structure in the data.77

Here, we present sliceTCA, a novel tensor decomposition that is based on the slice rank [Tao and Sawin,78

2016] (Methods). A rank-1 matrix is defined as the outer product of two vectors, so that each column of the79

matrix is a scaled version of the same column vector (Figure 1a). Similarly, a slice-rank-1 tensor is defined80

as the outer product of a vector and a matrix (or “slice”; Figure 1b). Depending on how the tensor is sliced,81

these components can capture three different classes of covariability (across neurons, trials, or time).82

To gain intuition on this, we may consider each slice type separately. First, a neuron-slicing component83

is described by a vector of characteristic neural weights and a matrix describing how the temporal dynamics84
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for that component changes across time and trials (Figure 1c). This component therefore captures variability85

which is shared across neurons, but which is unconstrained across time and trials. This is exactly the same86

class of covariability that is captured by common applications of matrix factorization methods in which the87

data tensor is reshaped or ‘unfolded’ into a N ×KT matrix (sometimes referred to as ‘trial-concatenated’88

matrix factorization, Supplementary Figure 1a). In contrast, the other two slice types lead to different89

assumptions about the source of covariability in the data. The trial-slicing components instead capture90

shared variability across trials, e.g., stereotyped neuron-specific temporal dynamics that vary together in91

amplitude over trials (Figure 1d). Finally, the time-slicing components identify shared variability over time.92

This could represent common dynamics whose neural encoding weights change from trial to trial, e.g., due93

to learning, adaptation, or drift (Figure 1e).94

If only one of these three slice types were fitted, sliceTCA would be equivalent to a matrix factoriza-95

tion on the respective unfolding of the data tensor (Supplementary Figure 1a-c). Indeed, previous work96

has argued for performing PCA on different unfoldings of the data tensor to identify the slice type that97

gives the best approximation [Seely et al., 2016]. Crucially, sliceTCA differs from this approach by fitting98

all three slice types simultaneously, thereby demixing different covariability classes that may be combined99

within the same dataset (Figure 1f,g). SliceTCA is also related to, yet distinct from TCA (also known as100

CANDECOMP/PARAFAC or CP decomposition) [Williams et al., 2018, Harshman et al., 1970, Carroll and101

Chang, 1970]. TCA constrains each component to be described by the outer product of three vectors of102

neural, trial, and temporal factors, which requires that each component must lie in the intersection of all103

three covariability classes (Figure 1g; Methods). As a result, sliceTCA is able to capture more structure in104

the data with fewer components as compared to other methods.105
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Figure 1: SliceTCA demixes shared variability across neurons, time, and trials. a. Schematic represen-
tation of a rank 1 matrix. Each column of the matrix is a scaled version of the same vector. Equivalently, the matrix
can be written as the outer product of that same column vector and a row vector representing the scaling weights. b.
Schematic representation of a slice-rank-1 tensor. Each “slice” of the tensor is a scaled version of the same matrix.
The tensor can be written as an outer product of that matrix (a “slice”) and a vector representing the scaling weights.
c. Example of a slice-rank-1 tensor that is an outer product of a neuron loading vector and a time-trial slice. This
component represents a latent variable with a fixed neural encoding but whose temporal profile changes from trial
to trial. d. Example slice-rank-1 tensor that is an outer product of a trial loading vector and a neuron-time slice,
representing a latent variable that scales in amplitude over trials but which has neuron specific dynamics within
a trial. e. Example slice-rank-1 tensor that is an outer product of a time loading vector and a neuron-trial slice,
representing a latent variable with a characteristic temporal profile within a trial, but whose neural encoding weights
change over trials. f. SliceTCA approximates the data tensor as a low-slice-rank approximation. Each component
is described as a slice-rank-1 tensor, which can be one of three types: neuron-, trial-, or time-slicing, corresponding
to the examples in (c-e). g. Schematic of the three covariability classes captured by sliceTCA. Matrix factorization
methods like PCA only capture a single covariability class at a time, depending on how the data tensor is unfolded into
matrix form. TCA requires the variability captured by each component to be shared across neurons, trials, and time
simultaneously (i.e., in the intersection of the three classes). In contrast, sliceTCA represents the union of these three
classes. h. Schematic of a toy model of perceptual learning during a Go/No-go task. On each trial, a population of
linear neurons receives two inputs: (1) sensory input from one of two upstream sources representing the presentation
of the Go or No-go stimulus, and (2) top-down modulation representing stimulus-independent factors. Red indicates
plastic synapses (Go/No-go weights potentiate/depress over Go/No-go trials, respectively). i. Evolution of inputs
over trials. Go/No-go inputs increase/decrease in strength over trials, while top-down inputs vary from trial to trial.
Since the neurons are linear, their activities will be a linear combination of these two input sources. j. Loss (mean
squared error) curves as a function of the number of components for different methods.
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2.2 Mixed variability in a simple model of perceptual learning106

Before applying sliceTCA to data, we first illustrate how mixed covariability classes could emerge in neural107

circuits. We built a toy model of sensory cortex during a Go/No-go task (Figure 1h). In this model, a108

population of linear cortical neurons received two sources of input in the context of a Go/No-go task (Figure109

1i; Supplementary Figure 2a). First, all neurons received sensory input representing the presented stimulus110

(either Go or No-go). The projection weights were plastic and subject to potentiation or depression (for111

the Go / No-go stimuli, respectively), in line with evidence of enhanced sensitivity to target stimuli in112

sensory cortex during perceptual learning [Poort et al., 2015]. The evolution of neural weights over trials113

was stochastic with heterogeneous learning rates, creating variability across neurons (Supplementary Figure114

2b; Methods). Second, all neurons also received input representing top-down modulatory processes such115

as arousal or behavior which may vary from trial to trial, but which were not directly related to the task116

[Vinck et al., 2015]. In this linear model, each neuron’s activity is simply the summation of its sensory and117

top-down input currents (Figure 1i).118

From these minimal assumptions, the two input sources represent two different classes of covariability.119

First, the sensory input has a characteristic temporal dynamics that is time-locked to stimulus presentation120

with neural encoding weights that vary over trials due to heterogeneity in the learning dynamics. In contrast,121

the top-down input source is characterized by fixed, non-plastic neural encoding weights but with trial-to-122

trial variability in the temporal dynamics. The resulting population activity has slice rank of two, as the sum123

of one time-slicing component (sensory input) and one neuron-slicing component (top-down input). Indeed,124

sliceTCA is able to capture the two ground truth components (Figure 1j, Supplementary Figure 2c). On125

the other hand, PCA and TCA require significantly more components to capture the variability (Figure 1j).126

SliceTCA outperformed PCA and TCA even when white noise was added to the data (Supplementary Figure127

2d,e). Together these results show that mixed covariability classes can emerge from minimal assumptions128

about heterogeneity in neural circuits, and that they can be disentangled using sliceTCA.129

2.3 Task relevant information is distributed across slice types in motor cortical130

reaching dynamics131

Based on the results of our toy model, we predicted that different slice types could capture different kinds of132

behaviorally relevant dynamics in neural data. We tested this hypothesis in a dataset comprising primary133

motor cortical (M1) and premotor cortical (PMd) populations recorded simultaneously during maze reaching134

and classic center-out (no maze) reaching tasks (Figure 2a, hand position). To quantify decoding perfor-135

mance, we linearly mapped population activity onto hand velocity (Methods). As a benchmark, we first136

mapped trial-averaged raw neural data on kinematic trajectories, revealing a close match between behavior137

and neural activity (Figure 2a, trial-averaged raw data). However, when we attempted to decode hand tra-138

jectories based on individual trials, we observed significant trial-to-trial variability that corresponded poorly139

to kinematic data (Figure 2a, raw data).140

We reasoned that single-trial kinematic information might be present in the data, but obscured by141

behaviorally irrelevant neural variability. If true, then the decoder should perform significantly better on142

properly denoised data. To test this, we first used a common approach of fitting a low-rank approximation143

using non-negative matrix factorization (NMF, R = 12 components) to the N × (TK) matrix of trial-144

concatenated neural activity (‘neuron-unfolded’ data). Surprisingly, this actually decreased the performance145

of the decoder (Figure 2a, neuron-slicing NMF), suggesting that the variability discarded by this denoising146

procedure contains information about hand kinematics. We wondered whether better performance could be147

obtained with a method that explicitly identifies shared variability across trials. Indeed, TCA-denoised data148

displayed a better match to the hand kinematics (R = 12 components, Figure 2a, TCA). Yet, by constraining149

the decomposition to be low tensor rank and thus also discarding temporal variability across neurons, TCA150

is not able to reconstruct neural sequences at a sufficiently high temporal resolution to allow for precise151

behavioral readout.152

By performing TCA and NMF on the neuron-unfolded data tensor, we have assumed that behaviourally-153

relevant variability in the data is shared across neurons (Figure 1g). However, previous work has emphasized154
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that dynamics in motor regions are better described by stereotyped sequences of activation that are shared155

across conditions [Seely et al., 2016, Mackevicius et al., 2019]. Following this intuition, we performed the156

same decoding analysis on denoised trial-unfolded data, where a T × (NK) matrix is approximated using157

NMF (R = 12 components). Remarkably, this simple change in denoising strategy resulted in a significantly158

better match between trial-to-trial variability in the data and in the hand kinematics (Figure 2a, trial-slicing159

NMF). We further validated that the components obtained by trial-slicing NMF corresponded to reach-tuned160

sequences whose temporal orderings were reproducible across held-out data (Supplementary Figure 3). These161

results reveal that in this dataset, behaviorally relevant information was encoded in neural sequences shared162

over trials, rather than by shared variability across neurons.163

Trial- and neuron-concatenated NMF constitute two special cases of non-negative sliceTCA, where ei-164

ther neuron-slicing components or trial-slicing components exclusively are fitted. Therefore, we next asked165

whether we could identify additional information in the data by demixing different classes of covariability166

with sliceTCA. Previous work has identified preparatory signals in the premotor cortex that indicate the167

dynamics of the upcoming movement [Shenoy et al., 2013]. We therefore hypothesized that we could capture168

preparatory signals in a time-slicing component with shared ramping dynamics, and neural encoding weights169

encoding reach targets and curvature on a trial-by-trial basis.170

Towards this end, we used sliceTCA to add a single time-slicing component to the previous model with171

12 trial-slicing components (Figure 2b; Supplementary Figure 4). In both the trial-slicing NMF model172

and the sliceTCA model with mixed slice types, the trial-slicing components identified sequential neural173

dynamics for similar reach conditions which seemed to be continuously tuned to target angles (Figure 2c;174

Supplementary Figure 4b). Decoding from these trial-slicing components (in either the mixed or the unmixed175

model) led to significantly better performance as compared to the neuron-slicing and TCA models (Figure176

2e; Supplementary Figure 5). The trial-slicing partial reconstruction from sliceTCA mapped slightly better177

onto hand kinematics in the mixed model than in the trial-slicing only model (Figure 2e, p < 0.001, Wilcoxon178

signed rank test). Intriguingly, while the single time-slicing component mapped poorly onto hand kinematics179

(Supplementary Figure 4a), it identified shared dynamics that peaked around 100 ms before movement onset180

(Figure 2d), consistent with a preparatory movement signal.181

If the time-slicing component contains motor preparatory information, we would further expect it to182

contain information regarding the parameters of the upcoming movement [Shenoy et al., 2013]. Indeed, the183

neural encoding weights in PMd (but not in M1; Supplementary Figure 6) were correlated across similar184

conditions and encoded both reach direction and curvature (Figure 2f-h). Therefore, while the trial-slicing185

components directly encoded motor sequences governing hand kinematics, the time-slicing component con-186

tained primarily preparatory information about movement parameters. Together, these results show that187

behaviorally relevant information in neural data can be spread across different slice types, motivating the188

need to demix variability classes with sliceTCA.189
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Figure 2: Time and trial slicing components identify preparatory and kinematic information in motor
cortical dynamics, respectively. a. Behavioral and motor cortical dynamics (n = 182 neurons from M1/PMd)
during a classic center-out reaching task with straight reaches (top) and curved maze reaches (bottom, modified
from Churchland et al. [2012]). Different colours indicate different reach directions. Hand position. Hand positions
during the experiment. Trial-averaged raw data. Condition-wise trial-averaged reaches (dashed lines) vs. condition-
averaged neural population activity (solid lines), projected onto the 2D subspace that best matches hand trajectories.
Raw data. Trial-by-trial mapping of raw population activity onto hand trajectories Neuron-slicing. Trial-by-trial
mapping of denoised population activity onto hand trajectories (neuron-slicing NMF, 12 components; equivalent to
NMF performed on the trial-concatenated data matrix). TCA. Trial-by-trial mapping of denoised population activity
(TCA, 12 components). Trial-slicing. Trial-by-trial mapping of denoised population activity (trial-slicing NMF, 12
components) onto hand trajectories. b. Schematics of sliceTCA models with multiple components of the same slice
type vs. a model with mixed slice types. c. Two example trial-slicing components, ordered by peak activation times
of the first component. Sequential patterns distinguished specific reach conditions (here, upper left vs. lower right) d.
The single time-slicing component has high temporal weight preceding movement onset, as well as condition-specific
neural weights in the slice. e. R2 of 5-fold cross-validated velocity decoding in each model. f. In PMd, correlations
between neural weights on the time-slicing component were high for pairs of trials with similar reach direction and
curvature, and low for dissimilar reaches. g. Mapping of average activity in the time-slicing component before
movement onset (0.75 − 0s pre-onset) onto reach targets reveals a strong association (R2 = 0.95 and R2 = 0.91,
center-out vs. curved reaches) h. Partially reconstructed activity from the time-slicing component, projected into a
three-dimensional subspace identified to maximally separate clockwise vs. counter-clockwise movements and target
x and y positions. Data points are clustered according to both reach direction and curvature, indicating that the
time-slicing component encodes information about the dynamics of the upcoming movement (dots indicate clockwise,
triangles counter-clockwise reaches).



2.4 Pipeline for sliceTCA model selection and optimization190

Dimensionality reduction methods, while powerful, can prove challenging in practice. First, robustly identi-191

fying the optimal number of components is a crucial yet challenging step in interpreting the dimensionality of192

neural representations [Stringer et al., 2019, Lanore et al., 2021]. In many tensor and matrix decomposition193

methods, such as NMF, different choices of the rank of the approximation may even lead to different results.194

Moreover, even after the rank is fixed, invariances in the decomposition may lead to multiple possible solu-195

tions. For example, matrix factorizations are known to be invariant to invertible linear transformations such196

as rotations. Similarly, sliceTCA is invariant to such transformations within each slice type (Supplementary197

Figure 7a, Methods). We have further identified a second class of invariant transformations that is specific198

to sliceTCA (Supplementary Figure 7b, 8, Methods). This invariance class, when unaccounted for, prevents199

an unambiguous attribution of covariance patterns to one of the three component types. Such invariances200

can lead to difficulties in comparing latent representations across multiple datasets [Williams et al., 2021]201

and are therefore crucial to address for any new method.202

To address these concerns and to provide a user-friendly guideline for sliceTCA, we developed a full203

data analysis pipeline for sliceTCA including data preprocessing, model selection, model optimization, and204

visualization (Figure 3a). First, trials must be time-warped, trimmed, or masked, in order for the data to205

be shaped into a tensor. Second, for choosing the optimal rank, we developed a rigorous cross-validation206

procedure to identify the number of components of each slice type (Figure 3b), which we validated on207

ground-truth data (Supplementary Figure 9). Third, to address the invariances of the decomposition, we208

developed a hierarchical model optimization that adds additional constraints in the form of “sub-losses”209

that must be minimized at three stages of optimization (Figure 3c; Supplementary Figure 10). One of the210

stages of this procedure is a regularization of the reconstructed tensors of each slice type. Moreover, for non-211

positivity-constrained sliceTCA, the same criteria used for matrix factorization methods (e.g., maximization212

of variance and orthogonality as in PCA) can be applied to find unique solutions with respect to invertible213

linear transformations. We further prove mathematically that a unique solution is guaranteed if each of the214

sub-losses is unique (Supplementary Mathematical Notes). Together, employing a rigorous and standardized215

pipeline for model selection, fitting, and optimization allows the user to make a robust, principled choice of216

sliceTCA decomposition for further analyses and interpretation.217
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Figure 3: SliceTCA model selection, optimization, and analysis pipeline. a. SliceTCA data processing
pipeline. First, neural data is preprocessed to form a data tensor. In experiments with variable trial length this
could include temporal warping, exclusion of outlier trials, and/or trimming to the time period of interest. Second,
model selection is performed to choose the number of components of each slice type (Rneuron, Rtrial, Rtime) based on
the cross-validated mean square error (MSE) loss. Next, the hierarchical model optimization procedure is performed
to identify a unique decomposition for the model. b. The cross-validation procedure for neural data tensors that we
propose. We randomly assign blocks of consecutive time points (blue) within the data tensor as held out data. The
remaining entries of the tensor are used as training data (white). To reduce correlations between the training and
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c. Hierarchical optimization over the sliceTCA invariance classes. We first fit the model on all data (optimizing the
MSE or L1 loss). Then, we consecutively optimize the secondary loss functions L2 and L3 as described in (a). After
this procedure, the resulting loading vectors and slices can be analyzed.

2.5 Denoising task-relevant manifolds during a motor task218

With a standardized data analysis pipeline established, we next asked how behaviorally relevant latent219

structure sliceTCA could uncover in a novel dataset, without any prior expectation on the component types.220

We applied sliceTCA to a dataset consisting of simultaneously imaged cerebellar granule cells and pyramidal221

neurons in the premotor cortex of mice performing a motor task (Figure 4a) [Wagner et al., 2019]. Using the222

sliceTCA analysis pipeline, we selected a model with three trial-slicing components and three neuron-slicing223

components at the elbow of the cross-validated loss function (Figure 4b,c, Supplementary Figure 11; similar224

components observed in the optimal model, Supplementary Figure 12). The first trial-slicing component225
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captured temporally distributed cerebellar and cortical dynamics that were common to both left and right226

correct reaches, but distinct from error reaches (Figure 4b,d). In contrast, the second trial-slicing component227

accounted for the differential activation in left vs. right trials (Figure 4b,d). A third component decayed228

slowly over trials, possibly representing adaptation over the course of the session (Figure 4b).229

In addition, the three neuron-slicing components captured trial-specific population dynamics mostly230

localized around the time of movement or reward (dashed lines, Figure 4c), with prolonged activity in error231

trials, compared to correct trials, in the first and third component (Mann Whitney U-test, p < 0.001 for both232

components). Interestingly, the second neuron-slicing component captured differences between cerebellar and233

cortical activity (Figure 4c,d). The effect of simultaneously fitting two different covariability classes can be234

observed by comparing sliceTCA to matrix factorization methods that do not demix neural- and trial-235

covariability (Figure 4e, Supplementary Figure 13). While several loading vectors and slice weights of the236

components found by PCA and FA appear similar to their corresponding sliceTCA components, sliceTCA237

revealed more detailed structure for other components. But by contrast, without disentangling different238

covariability classes, the slices identified by PCA and FA were of lower rank than the sliceTCA slices (Figure239

4e, Supplementary Figure 13), and thus capture less trial- or neuron-specific dynamics and less structure in240

the data. Together, these results show that sliceTCA identifies both task-specific (left, right, error trials) and241

region-specific (cerebellum vs. cortex) variables, by capturing the structure of neural data across multiple242

covariability classes.243

Classic neural dimensionality reduction methods capture structure that is shared across neurons while244

removing variability that is specific to individual neurons. We next illustrate how additionally modeling245

structure that is neuron-specific but shared across trials affects the reconstruction of the data tensor (Figure246

4f). Towards this end, we compared the neural representations of the raw data in neural space to the247

reconstructed data from the sliceTCA model. The sliceTCA reconstruction captured the same top principal248

components as the raw data, confirming that it was faithfully capturing the overall structure of the neural249

representation (Supplementary Figure 14). The advantage of including both neural and trial-covariability was250

reflected in increased behavioral interpretability of the neural representations. To show this, we projected the251

data onto the dimension that best separated left vs. right correct trials during the period between movement252

and reward. The axis found from the sliceTCA reconstruction revealed a more interpretable, denoised253

representation as compared to the dimension found from raw data (Figure 4g). Similarly, the task-relevant254

neural manifolds, found by projecting neural trajectories onto a subspace that separates activity along255

three task-relevant dimensions (see Methods), appear significantly denoised when sliceTCA was applied,256

compared to a direct projection of the raw data (Figure 4h; Supplementary Figure 14). We quantified this257

denoising effect by measuring the distance between left and right trials around the time of movement onset in258

sliceTCA reconstructions as compared to distances in raw data (Figure 4i). Our results show that sliceTCA,259

by grouping behaviorally similar trajectories in an unsupervised manner, increases the distance between260

trajectories of behaviorally distinct trials. Together, these results show that by demixing different classes261

of covariability, sliceTCA is able to denoise task-relevant representations in neural data in an unsupervised262

fashion.263

10



Figure 4: SliceTCA denoises task representations in simultaneously imaged cortical and cerebellar
populations. a. Schematic of a mouse moving a manipulandum during simultaneous imaging of premotor cortex
and cerebellum. Image modified from Wagner et al. [2019].

11



Figure 4 (previous page): b. The three trial-slicing components identified by sliceTCA. Weights in the loading
vectors are colored according to trial type: correct left (red), correct right (blue), and error (grey). In the slices,
neurons are sorted within each region (cbl, cerebellum and ctx, motor cortex) by the latency of maximum activation
in the first component. White dashed lines indicate movement onset, mid-turn, movement end, and reward. c.
Three neuron-slicing components. Loading vectors are separated into cerebellar and cortical populations. In the
corresponding slices, trials are separated into left or right cued trials and into correct or error turns (corr/err).
Within each block, trials are plotted in increasing order (ascending). d. Histograms of loading weights for the three
trial- (left) and neuron-slicing (right) components, colored by trial type and region. We classified weight vectors
(correct vs. incorrect and left vs. right correct trials; cerebellum vs. cortex). e. To show that sliceTCA results in
more demixed representations with higher-rank slices than concatenated matrix factorization methods, we calculated
the eigenvalues of the slices of the three trial-slicing components identified by PCA, factor analysis (FA), or sliceTCA.
Left: Slice eigenspectrum, averaged over the three trial-slicing components (black; spectra for individual components
in grey). Right, leading eigenvalue for each component. f. Example reconstructions of low slice rank approximations of
individual neurons. Left: Reconstruction from the trial-slicing components. The latent dynamics for each component
are neuron-specific, but shared across trials up to a scaling factor. Middle: Reconstruction from the neuron-slicing
components. The latent dynamics are trial-specific but shared across neurons except for a scaling factor. Right:
The full sliceTCA reconstruction is obtained by summing the contributions of all components from both slice types.
Red/blue indicate dynamics on an example left/right trial. g. Data from ten example trials per condition, projected
onto an axis that maximally separates left and right correct trials between movement onset and reward. Upper, raw
data projected onto an LDA dimension found from the raw data; middle, sliceTCA reconstruction projected onto a
dimension found in the sliceTCA reconstruction; lower, raw data projected onto the LDA dimension found in the
sliceTCA reconstruction. h. Neural manifolds comprising example trajectories per trial type in an orthonormalized
neural subspace found with LDA (axis 1, same as g; axis 2 that separates activity at the time of movement onset
vs. reward; axis 3 that separates pre-movement vs. mid-movement) from raw data and sliceTCA reconstruction. i.
Separation of the left vs. right trajectories from full data and data denoised with a mixed-component sliceTCA model.
∆within (and ∆between) indicates the distance of the population vector in each trial around the time of movement
onset to the center of the cluster of data points in its same (or, respectively, the opposite) trial class. Left and right
trajectories are more separable after sliceTCA denoising (Wilcoxon signed-rank test, p < .001 both for cerebellum
and motor cortex).

2.6 Identifying components with region-specific covariability patterns in multi-264

region recordings265

So far we have shown that mixed variability co-occurs within the same neural population. However, the266

need to consider multiple covariability classes becomes even more crucial in simultaneous recordings from267

many regions, as previous work has shown that different brain regions may be better described by different268

unfoldings of the data tensor [Seely et al., 2016]. Yet, relying on different tensor unfoldings for the analysis of269

distinct regions would require that these regions be analyzed separately, without leveraging the simultaneous270

nature of such data. We therefore asked whether sliceTCA could demix area-specific representations in271

distinct slice types.272

To test this idea, we took advantage of a recently published dataset consisting of Neuropixel recordings273

across six brain regions during a perceptual decision-making task (Figure 5a) [IBL et al., 2022]. We selected274

a model with eight components: two trial-slicing components, three neuron-slicing components, and three275

time-slicing components (Supplementary Figure 15, 16). The two trial-slicing components identified variables276

related to behavioral performance (Figure 5b). The first trial-slicing component separated correct from277

incorrect trials (Mann Whitney-U test, p < .001), and the corresponding slice was characterized by reward-278

locked temporal response profiles in midbrain nuclei (APN and MRN), which we validated in single neuron279

PSTHs (Figure 5c). The second trial-slicing component instead featured more temporally heterogeneous280

responses in all regions and correlated inversely with log reaction times (Pearson’s r = −0.35, p < 0.001,281

N = 831 trials; Figure 5b). We next asked how these components contributed to the activity of different282

regions. The full sliceTCA reconstruction explained 33% - 49% of neural activity, depending on the region283

(Figure 5d). Of this reconstructed activity, the two trial-slicing components contributed considerably to284
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neurons in APN, MRN, and thalamus (TH) (19 ± 10%, mean ± s.d., N = 75 neurons; Figure 5e). Thus,285

the trial-slicing components identified stereotyped dynamics in subcortical regions TH, APN, and MRN that286

were linked to behavioral performance across trials.287

In contrast, the three neuron-slicing components identified three distinct clusters of neurons corresponding288

to cortical regions: the hippocampus (CA), dentate gyrus (DG), and visual cortex (VIS) (Figure 5f). These289

components therefore represented population-wide covariability patterns that were specific to each of these290

regions. The slice of the CA-preferring component was characterized by a contrast-dependent activation291

between the sensory cue and reward (correlation of stimulus-evoked responses with contrast, Pearson’s r =292

0.40, p < 0.001; Figure 5f,g), a feature which was less prominent in the DG and not observed in VIS-293

preferring components (r = 0.11, p = 0.002 for DG, R = −0.05, p = 0.14 for VIS). In the DG-preferring294

component, we observed post-reward suppression on correct (rewarded) trials which was significantly shorter295

on error trials (Mann Whitney U-test, p < 0.001; Figure 5f). The final VIS-preferring component revealed296

pre-stimulus activation that increased in strength over trials (Pearson’s r = 0.55, p < 0.001, Figure 5f),297

possibly indicating the emergence of a predictive signal of cue onset over the course of the experiment. Each298

component contributed to a large fraction of the sliceTCA reconstruction in its respective region (37± 21%,299

N = 138 neurons; Figure 5h). Therefore, the three neuron-slicing components represented different task-300

relevant features that were separately encoded in CA, DG, and VIS population responses.301

Finally, the remaining time-slicing components partitioned the task duration into three distinct periods:302

early (pre-stimulus and stimulus onset), late (post-reward), and reward period (Figure 5i). The corresponding303

slices revealed smooth variations of the strength of each of these components in single neurons over the course304

of the experiment. Given the strong similarity of the three slices, we asked whether the components could sum305

to a flat trial-varying baseline for each neuron. However, when we examined single neurons we instead saw306

examples of a broad range of modulation patterns, with slowly varying activity that changed heterogenously307

over trials for the three task periods (Figure 5j as an example VIS neuron with increasing activity during308

pre-stimulus and post-reward periods, but not during the reward period). We tested this hypothesis using a309

linear model to compare the rate of change of the trial weights for each neuron across components (Methods).310

A substantial proportion of neurons across all regions showed significantly different rates of change across311

components (ANOVA, p < 0.05 with Bonferroni correction, N = 221 neurons; Supplementary Figure 17).312

Moreover, these three components contributed significantly to the sliceTCA reconstruction across all recorded313

regions (62±18%, N = 213 neurons; Figure 5h). Together, these results show that by accounting for different314

classes of covariability, sliceTCA is able to demix multi-region recording data into brain-wide representations315

of task period, and behaviorally-relevant stereotyped dynamics, and population-wide patterns of covariability316

encoded by individual regions.317
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Figure 5: SliceTCA identifies region-specific sensory and behavioral variables in multi-region record-
ings. Schematic of perceptual decision making task from the International Brain Laboratory (IBL). Figure modified
from IBL et al. [2021]. b. Two trial-slicing components: The loading vector of component 1 shows a separation
between correct (orange) and error (black) trials. In component 2, the color scale in loading vector indicates log
reaction time for each trial. In the corresponding slices: visual cortex (VIS), hippocampus (CA), dentate gyrus
(DG), thalamus (TH), anterior pretectal nucleus (APN), and midbrain reticular nucleus (MRN). White dashed lines
indicate stimulus onset and reward or timeout onset, respectively. Slice weights are normalized to [0,1] for each
neuron separately and sorted by the latency of peak activation within each region (separately for each component).
c. Top: PSTH of an example APN neuron with dominant reward-locked dynamics for correct (pink) and error trials
(black). Bottom: PSTH built from the full sliceTCA reconstruction. Arrows indicate stimulus onset and reward. d.
Reconstruction performance (Methods) of the full sliceTCA model, separated by region. Black dots indicate individ-
ual neurons. e. Contribution of each trial-slicing component to the overall reconstruction. f. Three neuron-slicing
components: In each slice, trials are grouped into blocks separately for different components. In component 1 with
dominant contribution of CA1, trials are grouped by contrast separately for left/right trials (within left/right, contrast
increases from bottom to top). In components 2 (DG-related) and 3 (VIS-related), trials are grouped into blocks by
left/right and correct/error. For all slices, within each block, trials are sorted in increasing order (ascending). Each
slice is normalized to [0,1]. g. Top: PSTH of an example CA neuron for low to high contrasts (dark to light green).
Bottom: PSTH built from the full sliceTCA reconstruction. h. Contribution of each neuron-slicing component to
the overall reconstruction. i. Three time-slicing components: In the slices, neurons are sorted within each region
according to increasing activation in early trials after normalizing weights for each neuron to [0,1] (same sorting across
components). j. Top: PSTH of an example VIS neuron for early to late trials (blue to teal). Bottom: PSTH built
from the full sliceTCA reconstruction.k. Contribution of each time-slicing component to the overall reconstruction.
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2.7 Geometric interpretation of sliceTCA components318

Recently, dimensionality reduction has been used in systems neuroscience to interpret neural population319

activity as trajectories embedded in a low-dimensional latent subspace within the full neural activity space.320

In sliceTCA, the neuron-slicing components can be interpreted in the same way due to their similarity to321

matrix factorization on trial-concatenated data. However, the time and trial slicing components have different322

interpretations as their natural bases lie within spaces in which each axis represents a different timepoint or323

a different trial. How then can then we grasp the time- and trial-slicing components’ contributions to latent324

representations in neural activity space?325

We can answer this question by considering the hypothetical contribution from each slice type separately.326

First, note that while the neuron-slicing components are constrained to an Rneuron-dimensional subspace,327

their dynamics within that subspace are unconstrained over trials (Figure 6, neuron-slicing component). On328

the other hand, the dynamics of the Rtime time-slicing components are constrained to a common temporal329

dynamic, but the neural weight vectors can instead vary from trial to trial. Geometrically, this means that330

the reconstruction from these components lies within an Rtime-dimensional subspace that can now vary331

on each trial, but that the temporal dynamics within each trial-specific subspace is constrained to be the332

same (Figure 6, time-slicing component). Finally, the Rtrial trial-slicing components’ neural weights change333

at every timepoint, while trial weights are fixed. This corresponds to latent dynamics that are no longer334

embedded in a low-dimensional subspace, but that are built instead from stereotyped dynamical trajectories335

(Figure 6, trial-slicing component; but see Supplementary Figure 18). In this way, the three covariability336

classes that we have described can also be seen as three classes of latent dynamics in neural activity space.337

Together, all three classes contribute to the dynamics of the full reconstruction, which may appear more338

complex than any one component type (Figure 6a, reconstruction).339

This geometric view illustrates that by fitting different classes of covariability, sliceTCA is able to capture340

latent dynamics that are no longer confined to a linear subspace, despite still being a multilinear method.341

In contrast, traditional matrix factorization methods which capture only a single covariability class are re-342

stricted to one of the three geometric classes of latent dynamics in neural space shown in Figure 6, while343

TCA constrains its components to obey the geometrical constraints of all three classes simultaneously (Sup-344

plementary Figure 19). In sum, sliceTCA is able to capture a broader range of covariability structure in345

neural data, and a broader range of latent representations in neural space, than related methods, all while346

remaining easily interpretable.347

Figure 6: Different slice types capture latent vari-
ables with distinct geometric properties. Neuron-
slicing component. Example of two neuron-slicing com-
ponents visualized in neural activity space. The latent
trajectories are embedded in an two-dimensional subspace,
but their dynamics within that subspace are unconstrained.
Time-slicing component. Example of two time-slicing com-
ponents. These are similarly embedded within an two-
dimensional subspace, but that subspace varies over tri-
als. The latent variables are further constrained to follow
the same dynamics within each latent subspace. Trial-
slicing component. The trial-slicing components are not
constrained to any latent subspace, as the neural encod-
ings may change at every timepoint. These components
describe potentially high-dimensional dynamics that are
stereotyped across trials. Note that here only 1 compo-
nent is shown for clarity. Reconstruction. After summing
these components, the full latent trajectories are not nec-
essarily limited by any of the geometric constraints that
characterize individual slice types.
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3 Discussion348

Neural population dynamics are frequently interpreted as low-dimensional latent variables encoded by fixed349

subgroups of neurons, which represent shared variability across neurons. Here, we have advocated for350

an expansion of this view of structure in neural data which takes into account three distinct classes of351

shared variability: across neurons, time, and trials. Towards this end, we introduced sliceTCA, a new352

tensor decomposition method that is able to demix latent variables that belong to any of these covariability353

classes. Through several example datasets, we demonstrated that sliceTCA can capture more task-relevant354

covariability in neural data in fewer components, enabling the description and interpretation of complex355

latent structure embedded in large-scale neural recordings. Finally, we illustrated how sliceTCA expands356

the classic view of neural population dynamics towards latent variables that are not constrained to low-357

dimensional dynamics in a fixed, linear manifold.358

Our framework of multiple covariability classes addresses key limitations of the classic view on latent359

dynamics, which is unable to identify several types of structure commonly found in neural data. In particular,360

this view fails to capture neural sequences, as previously pointed out in the literature [Mackevicius et al.,361

2019, Seely et al., 2016]. Indeed, task-relevant neural sequences are a widespread phenomenon observed across362

brain regions during navigation, timing, value-based decision making, and motor production [Harvey et al.,363

2012, Parker et al., 2022, Zhou et al., 2020]. Here we have emphasized the ability of the trial covariability364

class to capture neural sequences that have shared structure across trials, e.g. choice-specific sequences.365

However, we note that this class can capture more complex forms of neuron-specific temporal patterning366

within a trial [Feng et al., 2015, Lakshmanan et al., 2015, Koay et al., 2022]. On the other hand, population367

modes characterized by trial-to-trial differences in timing are captured in the neural covariability class. Such368

variations in timing may be critical for interpretation, for example the shift of the reward prediction error369

during temporal difference learning [Amo et al., 2022, Schultz, 1998]. Lastly, the time covariability class370

may be well-suited for describing forms of learning or representational drift in which the latent space over371

which neural data evolves over trials [Hennig et al., 2021, Rule et al., 2019]. Importantly, it has been argued372

that different brain regions are better described by neural or by trial covariability [Seely et al., 2016]. Our373

results support this hypothesis, and further show that these different classes can be demixed by sliceTCA.374

Therefore, demixing covariability classes may be a crucial step when considering large-scale multi-region375

recordings [IBL et al., 2022, Wagner et al., 2019, Ebrahimi et al., 2022, Ahrens et al., 2012].376

A longstanding challenge in systems neuroscience is the difficulty of mapping neural variability to changes377

in behavior [Renart and Machens, 2014]. This can be accomplished using supervised dimensionality reduction378

methods that use information regarding behavior or task outcomes to identify latent variables [Kobak et al.,379

2016, Sani et al., 2021a, Balzani et al., 2022]. Despite it being an unsupervised method, we found that380

SliceTCA was able to disentangle behavioral and task information in each of the datasets presented. We381

claim that this is due to two reasons: first, demixing different sources of covariability effectively “denoises”382

components that represent task variables that would have otherwise been occluded by additional sources of383

variability. Second, the trial-slicing components explicitly identify dynamics that are shared across trials,384

which tend to be defined by task variables or behavioral outcomes. Indeed, in each of the three datasets, we385

found that trial-slicing and time-slicing components correlated with behavioral variables. Moreover, in our386

feedforward model, we suggest how sliceTCA could offer a window into the computational roles of variables387

modeled by different slice types. We argue that the classical view on neural latents, which assumes that a388

key part of behaviorally relevant neural variability is correlated across neurons, is overly reductionist and389

may miss many types of neural dynamics underlying behavior.390

Beyond tensor and matrix based methods, more sophisticated forms of nonlinear dimensionality reduction391

can be used to identify latent variables embedded within a curved manifold [Balasubramanian and Schwartz,392

2002, Belkin and Niyogi, 2003, McInnes et al., 2018]. Within neuroscience, several methods have been393

proposed specifically for neural data, including methods based on neural networks [Pandarinath et al., 2018,394

Schimel et al., 2022, Sani et al., 2021b] or manifold reconstruction based on topological features [Chaudhuri395

et al., 2019, Rybakken et al., 2019]. While these methods are crucial for identifying nonlinearly embedded396

latent variables, a key advantage of matrix and tensor decompositions is the simplicity of the models. Indeed,397

the analytical tractability of the sliceTCA decomposition enabled us to characterize its invariance classes398
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and to propose a method to identify a unique solution. Identifying invariances is crucial for reproducibility399

and interpretation, as non-unique solutions may prohibit clear comparison across datasets [Dyer et al., 2017,400

Gallego et al., 2020]. This issue is ever more important with the recent increase in popularity of comparisons401

of neural data to task-trained neural network models, whose representations are known to be sensitive to402

model specifications such as architecture and inputs [Lindsay et al., 2022, Williams et al., 2021]. Going403

forward, matrix and tensor decompositions could prove useful for comparing latent representations by virtue404

of their interpretability and tractability.405

SliceTCA falls into a larger class of tensor decomposition methods including TCA [Williams et al., 2018,406

Harshman et al., 1970], which captures variability lying at the intersection of the covariabilty classes, and the407

Tucker decomposition, which allows factors to interact via a core tensor [Onken et al., 2016]. Yet while tensor408

decompositions can be viewed as generalizations of matrix factorizations, they do not always have the same409

properties. For example, tensor-based methods are known to be generally more computationally expensive410

[Kolda and Bader, 2009, Bläser et al., 2019]. Still, tensor decompositions are key methods in neuroscience as411

they allow the discovery of components that can be mapped across trials or conditions. Here we have focused412

on the classic third-order tensors (neurons × time × trials) that are frequently used in neuroscience. Current413

experimental techniques are rapidly enabling the acquisition of data tensors of even higher order, by adding414

legs that correspond to days or conditions. Future extensions of tensor methods that allow individuals to415

be incorporated as an additional leg could help to identify the neural basis of variability across subjects416

[Kuchibhotla et al., 2019, Smith et al., 2022]. Going forward, our framework of mixed classes of covariability417

can help to advance our understanding of behaviorally relevant latent structure in high-dimensional neural418

data recorded during increasingly complex tasks, across brain regions and across individual subjects.419

4 Methods420

4.1 Definition of sliceTCA model421

4.1.1 Matrix rank and matrix factorization422

Consider a data matrix consisting of N neurons recorded over T samples (timepoints): X ∈ RN×T . Matrix423

factorization methods find a low-rank approximation X̂ following Eq. 1, in which each component is a rank-1424

matrix: X(r) = u(r)⊗v(r), where u(r) ∈ RN and v(r) ∈ RT are vectors representing the neural and temporal425

coefficients, which are chosen to minimize a loss function. In other words, the activity of neuron n at time t426

is given by:427

X̂n,t =

R∑
r=1

u(r)
n v

(r)
t (2)428

A common choice of loss function is the mean squared error:429

L =
1

NT
∥X− X̂∥2F (3)430

Constraints may be added to the minimization of the loss, such as non-negativity of the coefficients in NMF.431

4.1.2 Slice rank and sliceTCA432

A d-tensor is a generalization of data matrices to d legs (i.e, a data matrix is a 2-tensor). Here we are433

specifically concerned with 3-tensors typically used in neuroscience, in which the three legs represent neurons,434

time, and trial/condition: X ∈ RN×T×K . SliceTCA extends the matrix factorization in Eq. (1) by fitting X435

with a low slice rank approximation [Tao and Sawin, 2016]. A slice-rank-1 d-tensor is an outer product of a436

vector and a (d− 1)-tensor. For the 3-tensors that we have been considering, this corresponds to the outer437

product of a ‘loading’ vector and a 2-tensor, thus making this 2-tensor a slice of this slice-rank-1 tensor up438

to a scalar multiple determined by the loading vector.439
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Each sliceTCA component can be one of three different slice types. For example, a neuron-slicing com-440

ponent can be written as X(r) = u(r) ⊗A(r) where A(r) ∈ RT×K is the time-by-trial slice representing the441

dynamics of the component across both time and trials and the vector u(r) represents the neural loading442

vector. Components of other slice types can be constructed similarly with their respective loading vectors443

and slices: v(r) ∈ RT ,B(r) ∈ RN×K for the time-slicing components, and v(r) ∈ RK ,C(r) ∈ RN×T for the444

trial-slicing components. Put together, this results in a decomposition of the following form:445

X̂n,t,k =

Rneuron∑
r=1

u(r)
n A

(r)
t,k +

Rtime∑
r=1

v
(r)
t B

(r)
n,k +

Rtrial∑
r=1

w
(r)
k C

(r)
n,t (4)446

Because of the different slice types, each sliceTCA model can be described by the hyperparameter 3-tuple447

R = (Rneuron, Rtrial, Rtime), defining the number of neuron-, trial-, and time-slicing components, for a total448

of Rneuron +Rtrial +Rtime components.449

4.1.3 Relationship to TCA450

The extension of matrix factorizations to TCA is based on a different definition of tensor rank, in which a451

rank-1 tensor is as an outer product of d vectors. Each component is defined by a set of vectors corresponding452

to trial coefficients w(r) ∈ RK to each component: X(r) = u(r) ⊗ v(r) ⊗ w(r). Then each element of the453

approximated data tensor can be written as:454

X̂n,t,k =

R∑
r=1

u(r)
n v

(r)
t w

(r)
k (5)455

In other words, a TCA component is a special case of a sliceTCA component in which the slice is a rank-1456

matrix. In this way, sliceTCA is more flexible than TCA as it has fewer constraints on the type of structure457

that is identified in the data. However, this increase in flexibility comes with a cost of an increase in the458

number of parameters, as sliceTCA fits all the entries of each slice. The flexibility of sliceTCA also leads459

to different invariance classes as discussed below. Finally, we note that the two methods can in principle be460

merged by incorporating TCA components into Eq. 4.461

4.2 SliceTCA invariance classes462

4.2.1 Transformations within a slice type463

Matrix factorization methods are known to be invariant to invertible linear transformations, including, but464

not limited to, rotations of the loading vectors. For example, suppose we decompose a matrix Y ∈ RN×T
465

into a the product of a matrix of weights, W ∈ RN×R and a matrix of scores, S ∈ RR×T . Consider any466

invertible linear transformation F ∈ RR×R. Then Y can be re-written as:467

Y = WS = WFF−1S = W̃S̃ (6)468

where W̃ = WF and S̃ = F−1S. As a result, matrix decompositions like factor analysis (FA) lead to not469

one solution, but rather an invariance class of equivalent solutions. Note that PCA avoids this problem by470

aligning the first component to the direction of maximum projected variance, as long as the eigenvalues of471

the covariance matrix are distinct. However, other methods which do not have a ranking of components472

are not able to use the same alignment. SliceTCA inherits this same invariance class, since all the loading473

vectors within a given slice type can be transformed in the same way as Eq. (6) to yield the same partially474

reconstructed tensor for each slice type (Supplementary Figure 7a).475

4.2.2 Transformations between slice types476

SliceTCA has an additional invariance class due to the fundamental properties of multilinear addition. For477

example, consider a slice-rank-2 tensor Y ∈ RN×T×K which is made of two components of different slice478
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types, which we will assume without loss of generality to be neuron- and time-slicing components with479

corresponding slices V and U, such that:480

Yn,t,k = unVt,k + vtUn,k481

Then the following transformation can be performed for arbitrary vector z ∈ RK ,482

Yn,t,k = unVt,k + vtUn,k + unvtzk − unvtzk483

= un(Vt,k − vtzk) + vt(Un,k + unzk)484

= unṼt,k + vtŨn,k485

where Ṽ = V−v⊗z and Ũ = U+u⊗z are transformations of the original slices. This invariance class there-486

fore corresponds to passing a tensor-rank-1 tensor between two slices of differing slice types (Supplementary487

Figure 7b).488

Note that two classes of transformations (within-slice-type and between-slice-type) commute (see propo-489

sition 1.2 of Mathematical Notes), and therefore one cannot get a new transformation by, for example,490

applying the first transformation, the second, and then the first again.491

4.2.3 Identification of unique sliceTCA decomposition492

In order to find a uniquely defined solution we can take advantage of natural hierarchy between the two493

invariance classes. Specifically, let us first define the partial reconstruction X̂neuron of the low-slice-rank494

approximation X̂ based on the neuron-slicing components, i.e.:495

X̂neuron =

Rneuron∑
r=1

u(r) ⊗A(r)
496

and let X̂time and X̂trial be similarly defined, so that X̂ = X̂neuron + X̂time + X̂trial. Now note that the497

within-slice-type transformations change the weights of the loading vectors and slices of all components of498

a given slice type, without changing the partial reconstructions for each slice type. For example, applying499

these transformations to the neuron-slicing components would change u(r) and A(r) but not X̂neuron. On500

the other hand, the between-slice-type transformations change the partial reconstructions X̂neuron, X̂time
501

and X̂trial, but not the full reconstruction X̂.502

We leveraged this hierarchy to develop a post-hoc model optimization into three steps, each with a503

distinct loss function. The first step identifies a model that minimizes a loss function L1 defined on the504

full reconstruction (Figure 3c i), fixing the tensor approximation X̂. Next, we use stochastic gradient505

descent to identify the between-slice-type transformation that minimizes a new loss function L2, which506

fixes X̂neuron, X̂time and X̂trial without affecting X̂ (Figure 3c ii). Finally, we identify the within-slice-type507

transformation that minimizes loss L3 to arrive at the final components (loading vectors u(r),v(r),w(r) and508

slices A(r),B(r),C(r)) without affecting X̂neuron, X̂trial, and X̂time (Figure 3c iii). Each of the three loss509

functions can in principle be chosen according to the constraints or normative assumptions most relevant510

to the question at hand. Furthermore, we prove that if each of these objective functions leads to a unique511

solution, then the decomposition is unique under the condition that rank A(r) > Rtime + Rtrial for all512

r = 1, . . . , Rneuron and similarly for the other two slice types (see Theorem 1.8, Supplementary Mathematical513

Notes).514

4.3 Model selection, optimization and fitting515

To fit sliceTCA for a given dataset arranged as a 3-tensor, we followed the data analysis pipeline described516

in the main text. Below, we provide details and hyperparameters for the steps involved in the pipeline.517
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4.3.1 Fitting sliceTCA with stochastic gradient descent518

For a fixed choice of R, model parameters (i.e., loading vectors and slices for each component) were fitted519

using the optimizer Adam [Kingma and Ba, 2014] in Pytorch [Paszke et al., 2019]. Initial parameters were520

randomly drawn from a uniform distribution over [−1, 1] or [0, 1], respectively, for unconstrained and non-521

negative sliceTCA. Throughout, we optimized the mean-squared error (MSE) loss in Eq. (3) with a learning522

rate of 0.02. To introduce stochasticity in the computation of the gradient, and thus avoid local minima, we523

masked a fraction of tensor entries so that they are not included in the calculation of the loss. This fraction524

starts at 80 % and decreases exponentially during training with a decay factor of 0.5 over three (Figure 2)525

or five blocks of iterations (Figures 4 and 5), respectively. Within each block, the mask indices are randomly526

reinitialized every 20 out of a total of 150 (Figure 2), 200 (Figure 4), or 100 iterations per block (Figure527

5). To obtain an optimal model under a given R, we repeated the fitting procedure ten times with different528

random seeds and chose the model with the lowest loss.529

4.3.2 Cross-validated grid search530

To choose the number of components in each slice type, we run a three-dimensional grid search to optimize531

the cross-validated loss. In addition to the decaying mask used during model fitting, we mask 20 % of the532

entries throughout the fitting procedure as held-out data. These masked entries were chosen in randomly533

selected 1 s (Figure 4) or 150 ms blocks (Figure 5) of consecutive timepoints in random neurons and trials.534

Blocked masking of held-out data (rather than salt-and-pepper masking) was necessary to avoid temporal535

correlations between the training and testing data due to the slow timescale of the Ca2+ indicator or due536

to smoothing effects in electrophysiological data. To further protect against spuriously high cross-validation537

performance due to temporal correlations, we trimmed the first and last 250 ms (Figure 4) or 40 ms (Figure538

5) from each block; this data was discarded from the test set, and only the remaining interior of each539

block was used to calculate the cross-validated loss. We repeated the grid search ten times with different540

random seeds for train-test-split and parameter initialization, while keeping a constant seed for different R.541

Once the cross-validated grid search is complete, we selected R∗ by identifying the model with minimum542

or alternatively, near-optimal average test loss across seeds. Admissible models are defined as achieving a543

minimum of 80 % of the optimal performance for non-constrained sliceTCA, and 95 % of the optimal model544

performance for non-negative sliceTCA, as compared to root mean squared entries of the raw data.545

4.3.3 Hierarchical model optimization546

For the first step of the model optimization procedure, we chose the mean squared error loss for L1:547

L1(u,A,v,B,w,C) =
1

KNT

∣∣∣∣∣
∣∣∣∣∣X−

(
Rneuron∑
r=1

[u(r) ⊗A(r)] +

Rtime∑
r=1

[v(r) ⊗B(r)] +

Rtrial∑
r=1

[w(r) ⊗C(r)]

)∣∣∣∣∣
∣∣∣∣∣
2

F

548

as in the model selection (essentially refitting the model with the specific ranks identified with the cross-549

validation procedure on the entire data). For L2 we use the sum of the squared entries of the three partial550

reconstructions from each slice type,551

L2(x,y, z) =

∣∣∣∣∣
∣∣∣∣∣X̂trial −

∑
r,s

x(r,s) ⊗ v(s) ⊗w(r) −
∑
r,s

u(r) ⊗ y(r,s) ⊗w(s)

∣∣∣∣∣
∣∣∣∣∣
2

F

552

+

∣∣∣∣∣
∣∣∣∣∣X̂time +

∑
r,s

x(r,s) ⊗ v(s) ⊗w(r) −
∑
r,s

u(r) ⊗ v(s) ⊗ z(r,s)

∣∣∣∣∣
∣∣∣∣∣
2

F

553

+

∣∣∣∣∣
∣∣∣∣∣X̂neuron +

∑
r,s

u(r) ⊗ y(r,s) ⊗w(s) +
∑
r,s

u(r) ⊗ v(s) ⊗ z(r,s)

∣∣∣∣∣
∣∣∣∣∣
2

F

554
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where x ∈ RRtime×Rtrial×N , y ∈ RRneuron×Rtrial×T , and z ∈ RRneuron×Rtime×K . This can be thought as a form555

of L2 regularization. For L3 we chose orthogonalization and variance explained ordering through singular556

value decomposition.557

4.4 Feedforward model of perceptual learning558

We modeled a population of linear neurons receiving sensory input from upstream sources representing a Go559

and a No-go stimulus, as well as input representing top-down modulation which varied from trial to trial.560

On each trial k, either the Go or No-go stimulus was activated, with probability p = 0.5 of presenting the561

same stimulus as was presented in the previous trial. Go/No-go inputs xGO, xNO were assumed to follow the562

same bell-shaped activation function st = e−(t−4)2 on the trials during which their corresponding stimulus563

was presented, i.e., xGO
t,k = st if k was a GO trial, xGO

t,k = 0 otherwise (and vice versa for No-go input).564

The stochastic learning process of the Go and No-go weights wGO
k ,wNO

k ∈ RN over trials was modeled as565

a Ornstein-Uhlenbeck process, which was initialized at wGO
0 = wNO

0 = 1 and evolved independently across566

neurons:567

dwGO
k = α(µGO −wGO

k )dk + σdWk568

dwNO
k = α(µNO −wNO

k )dk + σdWk569

where αn ∼ U([0.2, 0.8]) are the neuron-specific learning rates, µGO = 2, µNO = 0, σ = 1.3. Furthermore,570

to keep weights non-negative and simulate their saturation, they were clamped to [0, 2]. The process was571

evaluated using a stochastic differential equation solver and sampled at K evenly spaced points in [0, 10]572

representing K trials.573

Top-down modulation was modeled as a rectified Gaussian Process:574

xTD
t,k = max(0, γ(t)), γ ∼ GP (0, κ)575

with temporal kernel:576

κ(t1, t2) = exp

(
− (t1 − t2)

2

2l2

)
577

where l =
√
0.5. Top-down weights were non-plastic and distributed as wTD

n ∼ U([0, 1]).578

The activity of each neuron was thus given by:579

Xn,t,k = wGO
n,k x

GO
t + wNO

n,k x
NO
t + wTD

n xTD
t,k580

= wS
n,kst + wTD

n xTD
t,k581

where the sensory input is combined into wS
n,k = wGO

n,k1
GO
k + wNO

n,k (1 − 1GO
k ) where 1GO is an indicator582

function that is 1 when trial k is a Go trial and 0 if it is a No-go trial. By construction, the tensor X has583

slice rank of 2, as it can be written in the following form:584

X = IS + ITD
585

where ISn,t,k = wS
n,kst is a time-slicing component representing the weighted, trial-specific sensory input and586

ITD
n,t,k = wTD

n γt,k is a neuron-slicing component representing top-down modulatory factors that vary over587

trials. In our simulations, we used K = 100, T = 90, N = 80.588

We fitted sliceTCA with non-negativity constraints to the synthetic dataset, using five blocks of 200589

iterations each with a learning rate which decayed exponentially over blocks from 0.2 to 0.0125, and a mask590

that decayed exponentially over blocks from 0.8 to 0.05. Masked entries changed randomly every iteration.591

Initial parameters were drawn uniformly over [0, 1].592
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4.5 Dataset 1: Motor cortical recordings during a center-out and maze reaching593

task594

4.5.1 Description of the dataset595

We analyzed a dataset of motor cortical (M1, N = 90) and premotor cortical electrophysiological recordings596

(PMd, N = 92) [Churchland et al., 2012], which is curated and publicly available as part of the ’Neural597

Latents Benchmark’ project [Pei et al., 2021]. Briefly, monkeys were trained to perform a delayed center-out598

reach task to one of 27 locations in both maze conditions (in which barriers were placed on the screen,599

leading to curved optimal reach trajectories) and in no maze conditions with matched target locations600

(classic center-out task leading to straight optimal reach trajectories). The go signal for movement initiation601

appeared 0 − 1000ms after target onset and 1000 − 2600ms after the trial started with a fixation cue. We602

analyzed data from one animal (monkey J) in a single session and randomly subselected 12 target locations,603

resulting in K = 246 single-target trials in the maze reach conditions and K = 265 single-target trials in the604

12 center-out reach conditions with matched target locations.605

4.5.2 Additional preprocessing606

We calculated firing rates for bins of 10 ms which we then smoothed with a Gaussian filter with σ = 20 ms607

and rescaled to minimum and maximum values of 0 and 1 over the course of the experiment for each neuron608

separately. We selected a time period starting 1 s before movement onset (thus including a substantial part609

the motor preparation period) and ending 0.5 s after movement onset, when the monkey had successfully610

reached the target position in the majority of trials. We did not time-warp the data. The resulting data611

tensor had dimensions of N = 182, T = 150, and K = 511.612

4.5.3 Supervised mapping of neural population activity onto kinematic data613

To identify the neural subspace from which 2D hand trajectories could be read out (Figure 2a), we used614

ordinary least squares (OLS). Specifically, we found weights that project the neuron-unfolded data from the615

full neural space onto a 2D subspace that best maps onto x/y hand velocity with a time delay of 100 ms616

to account for the lag between neural activity and movement. When testing the decoding analysis after617

dimensionality reduction we instead applied OLS to the reconstruction (or partial reconstruction, i.e., from618

only a single slice type) after reshaping it into a N × KT matrix. We also used OLS to project time-619

averaged pre-movement activity onto target locations (Figure 2g). For Figure 2h, we used LDA to identify620

the dimension that best separates pre-movement averaged activity in clockwise vs. counter-clockwise curved621

reaches in the maze condition. To plot activity in a 3D neural subspace that contained information about the622

upcoming movement, we then orthogonalized the two axes which map neural activity onto target locations623

to the axis that distinguishes clockwise and counter-clockwise movements.624

For all decoding analyses, we calculated R2 values on left-out trials in a 5-fold cross-validation procedure625

performed on 100 permutations of the trials. Decoding was performed on data from period spanning 250 ms626

before to 450 ms after movement onset. For trial-resolved data (Figure 2a, raw data, neuron-slicing, TCA,627

trial-slicing.), we averaged trial-wise R2 values, and for pre-movement information on target positions, we628

calculated a single R2 value across trials for center-out and maze reaching conditions. For trial-averaged data629

(Figure 2a, trial-averaged), we performed 2-fold cross-validation by averaging hand and neural trajectories630

separately for each fold, and then calculating R2 values averaged over conditions and folds.631

4.5.4 Visualization of sliceTCA weights632

The results of fitting non-negative sliceTCA are shown in Figure 2c,d and Supplementary Figure 3. Each633

component consists of a weight vector and a slice of corresponding weights on the other two variables. Along634

the trial dimension, we sorted trials by the angle of the target position and whether trials belonged to635

center-out or maze reaching conditions. Along the neuron dimension of trial-slicing components, neurons636
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were sorted by the peak latency of neural activity in the first component. For the time-slicing component,637

neurons were sorted according to their mean activity in the first reaching condition.638

4.5.5 Correlation matrices639

To assess the encoding similarity of movement preparation in the time-slicing component, we calculated640

the K × K correlation matrix of the neural encoding weights (i.e., the rows of the slice in Figure 2d) for641

different pairs of trials, separately for center-out and maze reach conditions, and for PMd (Figure 2f) and M1642

(Supplementary Figure 6). We sorted the resulting correlation matrices by the angle of the target location643

(Figure 2f).644

4.6 Dataset 2: Cortico-cerebellar calcium imaging during a motor task645

4.6.1 Description of the dataset646

We analyzed recently published calcium imaging data consisting of simultaneously recorded cerebellar granule647

cells (N = 134) and premotor cortical L5 pyramidal cells (N = 152) from a head-fixed mouse performing a648

motor task in which a manipulandum had to be moved forward and left- or rightward for a reward [Wagner649

et al., 2019]. After a correct movement was completed, a water reward was delivered with a 1 s delay,650

followed by an additional 3.5 s inter-trial interval. Left vs. right rewarded turn directions were alternated651

without a cue after 40 successful trials. We analyzed data from one sessopm of a mouse in an advanced stage652

of learning, comprising a total of K = 218 trials. The data was sampled at a 30 Hz frame rate. Calcium653

traces were corrected for slow drifts, z-scored and low-pass filtered [Wagner et al., 2019].654

4.6.2 Additional preprocessing655

Due to the freely timed movement period, we piecewise linearly warped data to the median interval lengths656

between movement onset, turn, and movement end, respectively. The remaining trial periods were left657

unwarped and cut to include data from 1.5 s before movement onset until 2.5 s after reward delivery,658

resulting in a preprocessed N × T ×K data tensor with N = 286, T = 150, and K = 218.659

4.6.3 Visualization of sliceTCA weights660

In Figure Figure 4b,c, we show the results of a fitted sliceTCA model. We further reordered trials in the trial-661

time slices according to trial type, and the neurons in neuron-time slices according to the peak activity in the662

first trial-loading component. This allows for a visual comparison of tiling structure across components. We663

used Mann Whitney U-tests on time-averaged activity between reward and end of trial in trial-time slices.664

We used LDA to determine the classification accuracy for neuron identity (cerebellum vs. cortex) based on665

the loading vector weights of the three neuron-slicing components found by sliceTCA. We similarly reported666

classification accuracy of trial identity (error vs. correct, left vs. right) based on the loading vector weights667

of the trial-slicing components.668

4.6.4 Matrix rank of slices669

To determine whether sliceTCA finds components with higher matrix rank than methods that do not demix670

slice types (neuron-slicing PCA and factor analysis (FA) with neuron loadings, neuron-time-concatenated671

PCA and FA with trial loadings), we performed singular value decomposition (SVD) on the six slices of672

the sliceTCA model shown in Figure Figure 4b, as well as on the scores of either trial-slicing or neuron-673

slicing PCA and FA, after refolding the resulting scores into N × T or K × T matrices, respectively. We674

then compare these to the normalized eigenvalue spectra of the slices of the trial-slicing (Figure 4e) or675

neuron-slicing components (Supplementary Figure 13d). Factor analysis was performed using the Python676

package “sklearn” [Pedregosa et al., 2011], which uses an SVD-based solver. For comparability with PCA677

and sliceTCA solutions, no factor rotations were performed.678
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4.6.5 Manifolds from sliceTCA reconstructions679

To analyze the geometry of neural data, we reconstructed the low-slice-rank approximation of neural activity680

from the sliceTCA model separately for the cerebellum and for the premotor cortex. We then used LDA on681

both raw and reconstructed data to find the three axes that maximally separate left vs. right correct trials682

between movement onset and reward (axis 1, shown in Figure 4g), movement onset time vs. the time of683

reward in all correct trials (axis 2), and the time of motor preparation vs. motor execution (trial start vs.684

mid-movement, axis 3). We orthonormalized the three axes and projected raw and reconstructed data onto685

the new, three-dimensional basis Figure 4h.686

We then measured the distance ratio between trials of the same vs. between trials of a distinct trial class687

(left vs. right) in the full neural space. For the reconstructed vs. the full data set, we averaged neural activity688

over a 650 ms window centered at movement onset and measured the Euclidean distance of the population689

response in each trial to the trial-averaged population response in its own trial type, compared to the690

Euclidean distance to the average population response of the respective other trial type: ∆between/∆within,691

where ∆within = d(xL
k , x̄

L) is the Euclidean distance between population vectors in each left trial to the692

mean population vector across all left trials (and vice versa for right trials), and ∆between = d(xL
k , x̄

R) is693

the Euclidean distance of population vectors in each left trial to the mean population vector across all right694

trials (and vice versa for right trials).695

4.7 Dataset 3: Electrophysiology across many brain regions during perceptual696

decision making697

4.7.1 Description of the dataset698

The third analyzed dataset comprised recently published multi-region Neuropixel recordings (N = 303) in a699

mouse performing a perceptual decision making task [IBL et al., 2021]. In the task, mice were presented a700

grating patch image with varying contrast (0%, 25%, 35%, 50% or 100%), shown on the left or right sides of701

a screen. The mice were trained to move the image to the center of the screen using a steering wheel within702

a 60 s period in order to receive a sugary water reward. A correct response was registered if the stimulus703

was moved to the center, and an incorrect response if the stimulus was moved to the border of the screen.704

We selected a single example mouse (subject CSHL049 from the openly released ephys data repository).705

4.7.2 Additional preprocessing706

We binned single-neuron spiking events in 10 ms windows. Due to the variable response times across trials,707

we piecewise linearly warped data between stimulus onset and reward delivery or respectively, timeout onset,708

to correspond to the median interval length, and clipped the trial period to start 1 s before stimulus onset and709

to end 2 s after reward delivery or timeout onset. We smoothed data with a Gaussian filter with σ = 20ms710

and rescaled the activity of each neuron to a minimal and maximal value of 0 and 1 over all trials. We711

excluded neurons with mean firing rates below 0.2 Hz, leading to a total of N = 221 neurons analyzed out of712

N = 303 neurons recorded. Brain regions included visual cortex (VIS: anterior layers 2/3, 4, 5, 6a and 6b as713

well as anteromedial layers 2/3, 4, 5, and 6a; N = 85 neurons), hippocampal regions CA1 (N = 32 neurons)714

and dentate gyrus (DG: molecular, polymorph, and granule cell layers; N = 21 neurons), thalamus (TH,715

including posterior limiting nucleus and lateral posterior nucleus; N = 18 neurons) and the anterior pretectal716

and midbrain reticular nucleus (APN, N = 22 neurons, and MRN, N = 35 neurons) of the midbrain. In717

total, the resulting data tensor had dimensions N = 221, T = 350, and K = 831.718

4.7.3 Visualization of sliceTCA weights719

In Figure 5b, we scaled the rows of the neuron-time slices to a [0,1] interval to highlight differences in the720

timing of peak activity between neurons. We then reordered neuron-time slices by peak activity within721

each region for each slice type separately, to show characteristic differences between neural correlates of722

behavioral variables. Trial-time slices were regrouped by trial type to show region-specific representations723
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of task variables. Finally, neuron-trial slices were reordered by average weights across the first 100 trials for724

each neuron within a region.725

4.7.4 Reconstruction performance and component weights726

For each neuron, we estimated the goodness of fit of the sliceTCA reconstruction as:727

1−
∑

n,t,k (Xn,t,k − X̂n,t,k)
2∑

n,t,k X
2
n,t,k

728

We then quantified the contribution of the neuron-slicing components on the total sliceTCA reconstruction729

for each neuron n as the following ratio:730

fneuron
n =

∑
t,k X̂

neuron
n,t,k∑

t,k X̂n,t,k

731

where X̂neuron describes the partial reconstruction of the data tensor from only the neuron-slicing compo-732

nents. We similarly defined the contributions of the time- and trial-slicing components to the sliceTCA733

reconstruction of each neuron n as f time
n and f trial

n .734

4.8 Code availability735

A GPU accelerated Python library for the sliceTCA data analysis pipeline (including preprocessing, model736

selection, model optimization, and visualization of components) will be made available upon publication. In737

addition, the code necessary for reproducing main analyses will be published in a separate Github repository,738

also upon publication.739
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