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Abstract—The visual system processes stimuli over a wide
range of spatiotemporal scales, with individual neurons receiving
input from tens of thousands of neurons whose dynamics range
from milliseconds to tens of seconds. This poses a challenge to
create models that both accurately capture visual computations
and are mechanistically interpretable. Here we present a model
of salamander retinal ganglion cell spiking responses recorded
with a multielectrode array that captures natural scene responses
and slow adaptive dynamics. The model consists of a three-
layer convolutional neural network (CNN) modified to include
local recurrent synaptic dynamics taken from a linear-nonlinear-
kinetic (LNK) model [1]. We presented alternating natural scenes
and uniform field white noise stimuli designed to engage slow
contrast adaptation. To overcome difficulties fitting slow and
fast dynamics together, we first optimized all fast spatiotemporal
parameters, then separately optimized recurrent slow synaptic
parameters. The resulting full model reproduces a wide range
of retinal computations and is mechanistically interpretable,
having internal units that correspond to retinal interneurons with
biophysically modeled synapses. This model allows us to study
the contribution of model units to any retinal computation, and
examine how long-term adaptation changes the retinal neural
code for natural scenes through selective adaptation of retinal
pathways.

Index Terms—retina, contrast adaptation, neural network

I. INTRODUCTION

The processing of visual information in the nervous sys-
tem includes a broad set of computations, with timescales
that range from milliseconds to tens of seconds. On a fast
timescale, the precise timing of fast neural dynamics with
a short latency is essential to encode immediate properties
of the stimulus like the trajectory of a moving object. Over
longer timescales, adaptive properties produced by short-term
plasticity measure the statistics of the stimulus, allowing cells
to use their dynamic range efficiently and improve information
transmission [2]. One well-known example of computations

that span multiple timescales is contrast adaptation [3], [4] ,
whereby an increase in contrast triggers both fast and slow ad-
justments in sensitivity and response dynamics. To understand
these neural computations, dynamics and their mechanisms in
a unified framework, it is important to create a quantitative
multi-timescale neural encoding model with components that
can be mapped to neural mechanisms.

The challenge posed by modeling this broad range of neural
dynamics has thus far been addressed with separate types of
models. As shown in [5], [6], CNN models of the retina are
capable of predicting neural responses accurately for stimuli
of nontrivial spatiotemporal structures as well as capturing
many phenomena within the retinal integration timescale.
Moreover, they are interpretable in that internal model units
are highly correlated with the membrane potential of interneu-
rons. However, constrained by the feed-forward nature of
these models, long-timescale phenomena induced by synaptic
plasticity are beyond their predicting capabilities. In contrast,
the LNK model [1] successfully captures contrast adaptation
over multiple timescales using a first-order continuous Markov
model of the type used to describe chemical reactions, ion
channels, and synapses, but this model has been used only for
a spatially uniform stimulus. Consequently, it is unclear what
role such kinetics can play in a more realistic model setting
and how they interact with spatial information processing in
the retina.

Here we present a recurrent model of salamander retinal
ganglion cells consisting of two convolutional layers and local
recurrent synaptic dynamics taken from the LNK model [1].
These synaptic units are interpretable in that they correspond
to biophysical mechanisms of synaptic vesicle release. We
designed a novel protocol to train both the fast spatiotem-
poral parameters and slow synaptic parameters of the model
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Fig. 1: Model architecture. The model is based roughly on the structure of the retina in terms of three layers and the number of
cell types in each layer, although there are more cell types in the retina than kernel types, and so the model is a simplification
compared to the retina. The kinetics layer is placed at the location of the output synapses of the first layer, which would be
roughly equivalent to bipolar cell synapses. Details are explained in the main text.

separately using natural scenes and spatially uniform white
noise data sets. The resulting trained model is capable of
predicting the firing rates of retinal ganglion cells accurately
and capturing contrast adaptation as well as other visual
computations that our previous CNN models also capture [6].
Furthermore, our results suggest a general approach to fitting
a single model with interpretable recurrent synaptic units to
capture neural dynamics over multiple timescales.

II. METHODS

A. Visual stimuli

A video monitor projected visual stimuli at 30 Hz controlled
by Matlab (Mathworks), using Psychophysics Toolbox [7], [8].
Stimuli had a constant mean intensity of 8.3mW/m2. Images
were presented in a 50× 50 grid with a square size of 55µm.

We presented alternating natural scenes and spatially uni-
form white noise stimuli. The natural scene stimulus was a
sequence of jittered natural images sampled from a natural
image database [9]. The stimulus intensity of the spatially
uniform white noise was drawn every 33 ms from Gaussian
distributions whose contrast (standard deviation / mean inten-
sity) changed every 20 seconds. The contrast of each 20s block
was drawn uniformly from the interval [0.05, 0.35].

B. Electrophysiology

The responses of tiger salamander retinal ganglion cells
were recorded using a 60 channel multielectrode array. Further
experimental details are described in detail elsewhere [10].

C. Data preparation

Spiking responses were binned using 10 ms bins and
smoothed using a 10 ms Gaussian filter. The training dataset
of 95 minutes in total was divided according to a 90%/10%
train/validation split. The test dataset consisted of averaged
repeated trials to novel stimuli of 60 seconds natural scene
and 220 seconds spatially uniform white noise.

D. Model architecture

As shown in Fig. 1, the stimulus was convolved with eight
spatiotemporal filters of kernel size 15 and then transformed
by a sigmoidal nonlinearity in the first layer. To implement
the 15 × 15 linear filter, we stacked a sequence of linear
convolutional layers with small filters (kernel size 3) in place
of a single large convolutional layer, which we term the
linearly-stacked convolutional layer [6]. This novel implemen-
tation of the convolutional layer outperforms the traditional
manner of fitting each region in a large filter independently.
One explanation is that this structure reduces the number of
parameters, and also encourages a more localized filter which
matches the tendency of retinal neurons to have a localized
center-surround structure.

The second layer consists of recurrent synaptic units taken
from the LNK model [1] that are capable of capturing slow
dynamics of up to ten seconds. Each entry of the first layer
output tensor serves as the input u of its own kinetic system
while the transition rate parameters are shared across all
entries. Each kinetic system contains four kinetic states where
we denote R, A, I1, I2 the occupancies of the resting state, the
active state, and the two inactivated states, respectively. The
dynamics of each kinetic system is governed by the following
master equation:

d

dt

R(t)
A(t)
I1(t)
I2(t)

 =

−u(t)ka 0 kfr 0
u(t)ka −kfi 0 0

0 kfi − (kfr + ksi) ksr

0 0 ksi −ksr


R(t)

A(t)
I1(t)
I2(t)

 , (1)

where ka, kfr, kfi, ksi, and ksr are kinetic parameters.
The output of this kinetic layer is the tensor of active states
occupancies A(t) whose shape is the same as that of the first
layer.

The third layer consists of a linearly-stacked convolution
with kernel size 11 and a rectifying nonlinearity in eight output
channels. The final layer is a fully connected linear layer with
a softplus activation function.
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Fig. 2: Schematic of training procedure. We first fit the fast spatiotemporal parameters using interleaved data, then fit the slow
parameters in a marginalized one-pixel model using spatially uniform data. Details are explained in the main text.

E. Model training

As shown in Fig. 2, to fit slow and fast dynamics together,
we first optimized all fast spatiotemporal parameters (all
parameters except ksi and ksr), then separately optimized
recurrent slow synaptic parameters (ksi and ksr).

First, we initialized the fast kinetic parameters (ka, kfr,
kfi) according to the averaged values in the LNK model
reported in [1]. We then interleaved the natural scene and the
spatially uniform white noise datasets in the training dataset
and used it to optimize all fast parameters with the truncated
backpropagation through time (TBPTT) algorithm to minimize
the Poisson loss function.

For fitting slow dynamics with the white noise dataset, we
first marginalized the model into a one-pixel model given that
the stimulus and the activation in every layer are spatially
uniform. Specifically, the convolutional layers and the fully
connected layer were marginalized into one-dimensional lin-
ear functions while the nonlinearities and the kinetic layer
remained unchanged. We then froze all fast parameters and
only optimized the slow parameters in the one-pixel model
with the TBPTT algorithm. The marginalization reduced the
model size dramatically and thus allowed the long truncation
length (10 seconds in the data), which was essential for fitting
slow dynamics.

To avoid the high-frequency component dominating the loss
function when training the one-pixel model, we normalized
the loss in different time bins and frequency components. We
first divided the neural response y(t) and the model prediction
y′(t) into 10 s time bins. Each segment was then filtered
by a low pass and a high pass filter that were separated
by a cutoff frequency dividing the response into two bins
with approximately equal power. The loss function was then
computed as

L[y(t), y′(t)] =
∑
i

∑
j

lMSE [yij(t), y
′
ij(t)]

σ2
ij

, (2)

where yij(t) (y′ij(t)) is the response (model output) for time

bin i and frequency bin j, σij is the standard deviation of
yij(t), lMSE(·, ·) is the mean square error function.

Optimization was performed using ADAM [11] via Pytorch
[12] on NVIDIA Titan X GPUs. The network was regularized
with an L2 weight penalty at each layer.

III. RESULTS

Adaptive properties of model responses have been quantified
by observing changes in the parameters of a simpler model
fit under different stimuli, e.g. a linear-nonlinear (LN) model
consisting of a linear temporal filter and a static nonlinearity,
which is fit by the standard method of reverse correlation
to the spatially uniform Gaussian white noise [4] (Fig. 3a).
Note that the filter in this simple LN model are different from
filters in the more complex model. Our model captures the fast
change in temporal processing between low and high contrasts
where the linear filter of an LN model at high contrast is faster
and more biphasic than that of low contrast. Our model also
captures the fast change in sensitivity as defined as the mean
slope of the LN model nonlinearity as well as the fast and
slow changes in offset as defined as the mean value of the
nonlinearity. Furthermore, our model captures the multiscale
contrast adaptation across a population of model units (Fig.
3c). In summary, the measure based on the LN model implies
that our model accurately captures contrast adaptation over
multiple timescales.

Inspecting the occupancies of the kinetic states reveals how
our model captures multiscale contrast adaptation (Fig. 3b).
Overall, the first three states (R, A, and I1) reach equilibrium
very quickly while the I2 state reaches equilibrium slowly,
serving as a reservoir to control the total occupancy of the
other three states. The gain of the kinetics layer, which is
proportional to the resting state occupancy [1] drops rapidly
after the switch from low contrast to high contrast because the
mean value of the outgoing transition rate from the R state is
increased by the high contrast stimulus. At the same time, the
active state occupancy increases rapidly resulting in the strong
model response just after the transition to high contrast. The I1
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(a)

(b)

(c)

Fig. 3: The model captures multiscale contrast adaptation.
(a) LN models fit to the model output of different intervals
indicated by the colored bars in (b) where low contrast is
0.05 and high contrast is 0.35. Left, linear temporal filters.
Right, static nonlinearities. (b) Top, an example single trial of
the spatially uniform Gaussian white noise stimulus. Colored
bars indicate intervals Hearly , 1-5 s after the transition to
high contrast, Hlate, 5 - 10 s after the transition to high
contrast, Learly and Llate, defined as similar time intervals
after a low contrast step. Middle, the model response of one
output unit averaged over 100 trials. Bottom, the occupancies
of the kinetic states averaged over 100 trials for a contributing
channel. The dashed lines indicate the transitions between
stimuli of different contrasts. (c) Population summary of
contrast adaptation in the model. Top, the mean frequency
of the linear filter in LN models versus the contrast of the
stimulus. Middle, the average slope of the nonlinearity in the
LN models fit to Hearly and Hlate for different high contrasts
while low contrast was held at 0.05. Bottom, average value
of the nonlinearity in LN models fit to Hearly and Hlate for
different high contrasts while low contrast was held at 0.05

state occupancy also increases when reaching the equilibrium
among the three fast states, leading to a gradual increase of
the I2 state occupancy. As a consequence, the rising I2 state
reduces gradually the total occupancy of the other three fast
states producing the slow exponential decay of the model
response at high contrast. For the switch from high contrast
to low contrast, the mechanism is similar.

Our model also captures immediate spatiotemporal light

(a)

(b)

Fig. 4: The model captures immediate light responses
for both stimuli. (a) An example section of the Peristimu-
lus time histogram (PSTH) of the model response and the
recorded response. (b) The Pearson correlation measure of
the model performance on both the natural scene and the
spatially uniform Gaussian white noise. The performances on
the normally ordered dataset and the randomly shuffled dataset
are compared.

responses. The model can predict spiking responses of sala-
mander retinal ganglion cells accurately, approaching retinal
reliability for both natural scenes and spatially uniform Gaus-
sian white noise (Fig. 4). Moreover, the model performances
drop significantly on shuffled datasets that destroy the temporal
structure of the data longer than 0.4 seconds. This procedure
confirms the recurrent nature of the model and implies that the
recurrent structure in the model is functioning to accurately
process information over longer timescales.

IV. CONCLUSIONS

We created a mechanistically interpretable model that is ca-
pable of capturing contrast adaptation over multiple timescales
as well as spatiotemporal immediate light responses to natural
scenes. To optimize this model, we designed a novel training
strategy for capturing fast and slow neural dynamics separately
with a single model, which is difficult because hidden variables
evolving over different timescales are entangled with each
other, interact with the constantly fluctuating stimulus and are
further nonlinearly combined to produce the observable output
response.

Our results suggest a general approach to fitting multiscale
dynamics that might be applicable to capturing other long-
timescale phenomena, such as sensitization [10], [13] which
has similar dynamics to contrast adaptation but opposite in
sign, where certain cells become more sensitive when stimu-
lated with a localized strong stimulus. Compared to previous
CNN models that only capture short-term neural dynamics
for retinal ganglion cells, the additional kinetics blocks in
our model act as recurrent structures to capture long-term
dynamics. This kinetic structure has a strong correspondence
to the biophysics of retinal synapses, following the general
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principle of constraining the model architecture to be more
realistic through the demand of replicating neural phenomena.
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